首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2548篇
  免费   298篇
  国内免费   480篇
化学   2232篇
晶体学   51篇
力学   156篇
综合类   9篇
数学   159篇
物理学   719篇
  2024年   3篇
  2023年   23篇
  2022年   34篇
  2021年   46篇
  2020年   96篇
  2019年   69篇
  2018年   79篇
  2017年   69篇
  2016年   120篇
  2015年   106篇
  2014年   151篇
  2013年   256篇
  2012年   150篇
  2011年   204篇
  2010年   175篇
  2009年   231篇
  2008年   239篇
  2007年   200篇
  2006年   199篇
  2005年   141篇
  2004年   127篇
  2003年   71篇
  2002年   55篇
  2001年   45篇
  2000年   63篇
  1999年   54篇
  1998年   37篇
  1997年   33篇
  1996年   23篇
  1995年   26篇
  1994年   23篇
  1993年   19篇
  1992年   15篇
  1991年   16篇
  1990年   13篇
  1989年   18篇
  1988年   13篇
  1987年   11篇
  1986年   9篇
  1985年   4篇
  1984年   10篇
  1982年   13篇
  1981年   6篇
  1980年   9篇
  1979年   7篇
  1978年   5篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1969年   1篇
排序方式: 共有3326条查询结果,搜索用时 15 毫秒
1.
In recent years, spatial self-phase modulation (SSPM) with two-dimensional (2D) materials has attracted the attention of many researchers as an emerging and ubiquitous nonlinear optical effect. In this review, the state of the art of 2D material-based SSPM is summarized. SSPM measures or tunes the nonlinearity of 2D materials, and it is also an effective approach to study the band structure of 2D materials. Several modified forms of SSPM, such as high-order, white-light-excited, vector field excited, and optically nonlinearly enhanced SSPM are also presented. Subsequently, the physical origin of the SSPM formation mechanism is compared and analyzed. Furthermore, the applications of SSPM with 2D materials, including passive photonic devices, generation of Bessel beams, and identifying the mode of the orbital angular momentum, are listed. Finally, several urgent problems of the SSPM with 2D materials, potential applications, and prospects for future development are presented.  相似文献   
2.
《中国化学快报》2020,31(6):1516-1519
CuWO_4,as an n-type oxide semiconductor with a bandgap of 2.2 eV,has stimulated enormous interest as a potential broad-spectrum-active photocatalyst for environmental pollution remediations.However,rapid charge recombination greatly hinders its practical applications.Herein,we present a cascaded electron transition pathway in a ternary heterostructure consisting of CdS quantum dots,carbon dots(CDs) and CuWO_4 hollow spheres,which proves to greatly facilitate the photogenerated electron-hole separation,and eventually boosts the degradation efficiency of phenol and congo red by 100% and 46%compared to bare CuWO_4.The enhanced performance of the CuWO_4/CdS/CDs heterostructure mainly originates from the unidirectional electron migration from CdS to CuWO_4 and then to the organics through CDs.This work elucidates the electron transfer kinetics in multi-phase system and provides a new design paradigm for optimizing the properties of CuWO_4 based photocatalysts.  相似文献   
3.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
4.
Highly dispersed palladium nanoclusters incorporated on amino‐functionalized silica sphere surfaces (Pd/SiO2‐NH2) were fabricated by a simple one‐pot synthesis utilizing 3‐(2‐aminoethylamino)propyltrimethoxysilane (AAPTS) as coordinating agent. Uniform palladium nanoclusters with an average size of 1.1 nm can be obtained during the co‐condensation of tetraethyl orthosilicate and AAPTS owing to the strong interaction between palladium species and amino groups in AAPTS. The palladium particle size can be controlled by addition of AAPTS and plays a significant role in the catalytic performance. The Pd/SiO2‐NH2 catalyst exhibits high catalytic activity for succinic acid hydrogenation with 100% conversion and 94% selectivity towards γ‐butyrolactone using 1,4‐dioxane as solvent at 240°C and 60 bar for 4 h. Moreover, the Pd/SiO2‐NH2 catalyst is robust and readily reusable without loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Although atomically precise polyhydrido copper nanoclusters are of prime interest for a variety of applications, they have so far remained scarce. Herein, this work describes the synthesis of a dithiophosphate-protected copper(I) hydride-rich nanocluster (NC), [Cu30H18{S2P(OnPr)2}12] ( 1H ), fully characterized by various spectroscopic methods and single-crystal X-ray diffraction. The X-ray structure of 1H reveals an unprecedented central Cu12 hollow icosahedron. Six faces of this icosahedron are capped by Cu3 triangles, the whole Cu30 core being wrapped by twelve dithiophosphate ligands and the whole cluster has ideal S6 symmetry. The locations of the 18 hydrides in 1H were ascertained by a single-crystal neutron diffraction study. They are composed of three types: capping μ3-H, interstitial μ4-H (seesaw) and μ5-H ligands (square pyramidal), in good agreement with the DFT simulations. The numbers of hydrides and ligand resonances in the 1H NMR spectrum of 1H are in line with their coordination environment in the solid state, retaining the S6 symmetry in solution. Furthermore, two new Se-protected polyhydrido copper nanoclusters, [Cu30H18{Se2P(OR)2}12] ( 2H : R=iPr 3H : R=iBu) were synthesized from their sulfur relative 1H via ligand displacement reaction and their X-ray structures feature the exceptional case where both the NC shape and size are fully conserved during the course of ligand exchange. DFT and TD-DFT calculations allow understanding the bonding and optical properties of clusters 1H – 3H . In addition, the reaction of 1H with [Pd(PPh3)2Cl2] in the presence of terminal alkynes led to the formation of new bimetallic Cu−Pd alloy clusters [PdCu14H2{S2P(OnPr)2}6(C≡CR)6] ( 4 : R=Ph; 5 : R = C6H4F).  相似文献   
6.
ABO hemolytic disease of the newborn (ABO-HDN), which may cause neonatal jaundice and polycythemia, or even stillbirth or neonatal death, is widespread in China. Prenatal testing for the fetal ABO blood group can reduce unnecessary concerns or ensure prompt treatment. Herein, we presented a method to employ high-density silica microbeads (SiO2 MBs) for capturing fetal nucleated red blood cells (fnRBCs) in maternal peripheral blood, and we detected the ABO genotype of the fetus using these captured cells. We evaluated 52 patients using the SiO2 MBs. Among 26 pregnant women with type O blood, 8 (30.8%) of the fetuses had type A blood, 5 (19.2%) had type B blood, and 13 (50%) had type O blood. SRY genes were detected in all 27 male fetuses. This study represents a simple and effective method for noninvasive prenatal detection of the fetal ABO genotype. We believe that this method has great potential for noninvasive prenatal testing of the fetal Rh blood group and other fetal diseases as well.  相似文献   
7.
We show that the only rational homology spheres which can admit almost complex structures occur in dimensions two and six. Moreover, we provide infinitely many examples of six-dimensional rational homology spheres which admit almost complex structures, and infinitely many which do not. We then show that if a closed almost complex manifold has sum of Betti numbers three, then its dimension must be a power of two.  相似文献   
8.
This article deals with the various heat source responses in a transversely isotropic hollow cylinder under the purview of three-phase-lag (TPL) generalized thermoelasticity theory. In presence of magnetic field and due to the rotating behavior of the cylinder, the governing equations are redefined for generalized thermoelasticity with thermal time delay. In order to obtain the stress, displacement and temperature field, the field functions are expressed in terms of modified Bessel functions in Laplace transformed domain. When the outer radius of hollow cylinder tends to infinity, the corresponding results are discussed. Finally an appropriate Laplace transform inversion technique is adopted.  相似文献   
9.
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin‐producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface‐to‐volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.  相似文献   
10.
This study increases the basic understanding of optical material properties of polymer powders used in selective laser sintering (SLS). Therefore, different polymer powder materials were analyzed regarding their optical material properties with an integration spheres measurement setup. By the measurements a direct connection between the absorption behavior of the solid material and the overall optical material characteristics of the same material in powdery form could be shown. The results were used to develop an advanced explanation model for the optical material properties of powders. At present, existing explanation models only consider the occurring of multiple reflections in the gaps between the particles to explain the overall optical material properties of powder materials. Thus, by also considering the absorption behavior of the single particles, the basic understanding of the beam-matter interaction and their effect on the optical material properties of powder materials can be expanded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号